AD-All4Y 604 ROYAL SIGNALS AND RADAR ESTABLISHMENY MALVERN {ENGLAND) F/6 9/2
ADA ON MULTIPLE PROCESSORS: (U}
MAR 82 J A MCDERMIO

UNCLASSIFIED RSRE~MEMO-3464 DRIC-BR-83066 NL

t i B
n | v:\‘.l::” ’

EEE
E
9 3

E
13
- fe

g
l
rEE

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A
- L]

TOOTVILIVE

Accession Por
ROYAL SIGNALS AND RADAR ESTABLISHMENT NTIS GRARI
DTIC TAB g !
Memorandum 3464 Unannounced |
Justification _ _
TITLE: ADA ON MULTIPLE PROCESSORS
By.
AUTHOR: John A McDermid orIc Distribution/
Availability Coq -
. Cory | oo -apllity Codes
DATE: 11 March 1982 orceryy avail andjop
2 Dist Special
Al |

S
y UMMARY

s

éis paper considers a number of possible ways of implementing the Ada
rendezvous in a computer system comprising a number of processors. It shows
that, in principle, a two phase protocol requiring four messages to be passed
is necessary to implement the rendezvous correctly when timed calls are used.
However in many cases a simpler, one phase, protocol requiring only two
messages per rendezvous can be used.

A comparison is made between the rendezvous and message based
communication for situations where one to many, rather than one to one,
communication is required. The rendezvous is shown to be very inefficient
for implementing one to many communication. Finally some of the problems of
loading and running Ada programs are briefly considered. ?

This memorandum is tor advance information. it is not necessarily to be
regarded as a final or official statement by Procurement Executive, Ministry
of Defence

Copyright
(of
Controlier HMSO London
1982

TSRO 2+ A0 £ pee s

Aa

N Tntroduction

The wurpose of this document is to discuss the problems of implementing
2a on a Multiple Processor Computer System and to compare possible ways of
overcoming these problems. We shall be concerned primarily with how a
rerriezvous can be achievel between tasks rumning on different computers, as
this seems to be the main technical problem. We will compare the different
ways of imp'ementing the remlezvous in terms of the number of inter -
computer messages, an' context switches which they require as these are
{probably) the two most important aspects of the overheals involved in
providing the remiezvous.

?) Assumptions

We make the following basic assumptions about the characteristics of the
M11tiple Processor System (MPS) on which we wish to implement Ada. First, it
seems that the implementation of the remdezvous in 2 system having shared
main memory can be achievel simply by exterding a single processor
implementation. 7Tt is less obvious how to implement the remlezvous without
sharel main memory, so we will concentrate our attention on such Multi
Computer Systems (MCS). As a oconsequence we will assume that varameters and
results are passed by value rather than by reference.

Secorrl, we assume that there is a kernel running in each commuter which
supports the Ada tasks, wperforms scheluling ani provides the mechanisms for
inter - computer commmication. We assume that the kernel need not be
written in Ma, ,

Third, we assume that the communication system provides the abstraction
of total reliability, so we will not consider the problems of lost messages
etc. Tmolicitly this means that the transmission of a single message, at the
user program level, may recquire many low leve) messages to be transmitted.
We wil! always quote the number of messages required by a particular
implementation of the remlezvous at the user orogram level as this gives the
simplest basis for comparison.

Finally, we Aistinguish two Adifferent types of context switch. A Task
Context Switch (TCS) occurs when 3 task is scheduled or suspende? for some
reason (e.g. waiting for an entry call to be accepted). An Interrupt Context
Swirch (TCS) occurs when an interruot hamller is entered or exited. We will
assume that an TCS only occurs twice per received message although this may
be verv far from the truth with word or byte orientel communication systems.
One might expect that the time required to verform an TCS will be smaller
than that required to verform a TCS, although this will not universally he
trw.

Tt is perhaps worth noting that the Nassi - Habermann optimisation
cannot be performel when the commmicating tasks are in different computers.
HYowever it might be possible to exploit this optimisation if shared main
memory is available,

3) Simple Rendezvous

By a simple remlezvous we mean one where the calling task calls the
entry uncorditionally (amd without timeouts), and the called task
unconiitionally accepts the call (although not necessarily immediately it is
issuel) . Maturally we assuwe that the calling and called tasks are running
on separate comouters. The simple remezvous can be implemented as indicated
below:

B e D U PO

i

Calling Task Called Task

entry call
suspem \"cau_msq

T ————schedule

accept
'

- -

return

return_msg " suspemd

- - - —

schedul
return

This straightforward implementation requires two messages to be passed
between the computers, and requires two ICS in each machine to hamdle the
receipt of the messages. 7Tn the calling task two TCS are required. In the
called task up to two TCS may be required, but the number deperds on whether
or mot the task is active immediately before and after the remiezvous. This
comment applies throughout the following discussion.

Tf necessary exceptions can be returned to the calling task: e.qg.
Tasking_Brror can be returned if the called task has terminatel.

4\ Conlitional Bntry Calls

These can he implemented in the same basic way as the simple rendezvous,
except that a rejection may have to be returned, rather than the result of
executing the entry procedure. Tt is possible that two TCSs will be required
in the called task even if the call is rejected. ‘These context switches can
be avoided if the kernel (interrupt hanmdling routines) can vreserve enough
information about the called task to know whether or not a rendezvous is
vossible, without entering the enviromment of the called task.

5) Selective Waits

Selective waits can be implemented using the basic method described
above.

5) Timed Entry Calls

5.1) Tntroduction

If timed entry calls were implemented by the above mechanism it is
possible that the timeout might expire, causing the calling tagk to execute
its alternative code, whilst the called task was executing the entry. This
eventuality would be a violation of the remdezvous semantics, and clearly
must be avoided.

For a timed entry call, the timing is verformed on acceprance of the
entry call, not on the execution of the entry. This means that (in principle
at least) information needs to be passed back to the calling task once the
call is accepted, as wel)l as on the completion of the call. This is the
basis of our first alternative solution below.

6.2y Simple Approach

e x L ek s vk

N

RIS e S Iy e

The simplest approach to implementing timed entry colls scems to be to
use a two vhase "hanishake” protocol. The first vhase governs the acceptance
of the call, anl the seconl is equivalent to the protocol described in
section 2 oontrolling the execution of the entry. The execution of the
orotocol would be as follows if the call were successful:

Calling Task Called Task
entry call
suspsnd —%call_msg
= schedule
accept

report accept
accept_ack“/ suspend

schedulea—"
call confirm

suspend *confirm_msg !

! T schedule

execute entry

~n
o
ot
=
[a}
=]

]
schedile
return

This requires four messages, four TCS for each task, aml four ICS for each
task.

Because of the timeout it is vpossible for the called task to accept the
entry call after the callers timeout has expired, and the task has continued
execution. There are two ways of recovering from this situation: the calling
task can be "rolled back", so that the entry is executed; or the acceptance
of the call can be cancelled. The former course may be very difficult,
especially if the calling task has entered into communication with other
tasks, or performel some I/0 before the acceot message is received. The
latter course only requires the information recording the acceptance of the
call to be changel (as the called task will be susperded). Clearly the
latter approach is much simpler to achieve and it correctly implements the
semantics of the timeld call.

The hehaviour will be as follows for a call which is not accepted before
the timeout expires:

Calling Task Callel Task
entry-call
suspen? e call_mag
| T schedule
i accept
time out report_accept
schefule accept_ack®™ gusperd
wottrentrv H
4 sbort msg]
! = TT———schedule
i cancel_accept
susperry

This requires three messages, two TCS in the calling task, an? four in the
callel task. There will be two ICS in the calling task, an four in the
called task,

i

A problem which arises with this implementation is dealing with acceot
messages which arrive long after the timeout has exvired, aml the callimg
task has continued with its alternative action. '™here seem to be two
possible avproaches. The kernel could maintain information reqarding the
incomplete remdezvous until the accept message is received and the abort
message can be generatedl. This technique may give problems with storage
management if large numbers of remndezvous have to be “"remembered®.
Alternatively, the incomplete remlezvous can be forgotten and the kernel can
respond to any unrecognised acceot message with an abort message. This
latter technique will not immose storage overheads but it has the
Aisadvantage that it will not help in the Adetection of certain error
comlitions, such as trying to communicate with a task that has already
terminated.

Clearly this straightforward implementation is quite costly in terms of
messages andl context switches. There are, however, more efficient ways of
implementing the rendezvous which may be applicable in some circumstances.
These methods rely on being able to execute the timeout in the called task.

6.7 Timing at Both Ends

When calling the entry, the calling task could transmit the timeout
duration to the called task. Assuming that both tasks have access to clocks
running at roughly similar rates, then the called task can inspect the
timeout veriod amd not reply if it knows that it will not be able to accept
the call quickly enough. Unfortunately we cannot guarantee to avoid the
situation where an accept message 1S received after the callers timeout has
expired (unless the timing of the communication etc., is deterministic and
well known) so we must still cater for the vossibility of having to abort
the remlezvous.

6.4) Timing only at Called ¥nd

Tf the message Adelay through the ocommunication system is well known,
Jeterministic, anl short with respect to the timeout period then it may be
possible for the called task to execute the timeout on behalf of the calling
task. If this is the case then we can use a single phase protocol for
oer forming the remlezvous as we Adescribed in section 3. The only change to
the protocol of section 3 is that the called task can return a "timed out"
message to the caller in order to allow it to ocontinue without performing
the remezvous.

This implementation is attractive in that it is comparatively efficient.
However there is a problem to 40 with reliability. 1If the processor running
the called task fails then the calling task may never (or very belatedly)
receive its timeout message. ne of the reasons for using timed entry calls
may be to allow detection of, and recovery from, remote failures, in which
case timing at the called end may not be satisfactory. Arguably it should be
the responsibility of the kernel to detect remote failures and to return a
suitable exception to the task. However the time taken by the kernel to
detect the failure may be much longer than the time the calling task is
willing t0 wait. 1t seems therefore that there will be circumstances urrler
which the two phase protocol will have to be used,

7 Summary of Rendezvous Implementations

We have Aescribed a mumber of ways in which the rendezvous can be
inolemented. The most efficient method which we can use is a simple, one

o s e

i‘mrw-?ag.:*r-\v:'«.;v,g*’ijnhv.r e e

phase protocol as Aescribed in section §.4. This orotocol can cater for the
simple remezvous, oonditional remlezvous and, umder some circumstances,
with timel rendezvous. This protocol will typically require two messaqges,
two TCS per task, and two ICS per task.

For the circumstances where the one phase protocol is not acceptable,
e.qg. where we wish to recover from the failure of remote computers, then the
two phase protocol Jescribed in section 6.2 will have to be used. This
protocol has twice the owerhead of the single vhase vrotocol if the
renlezvous is completed successfully. 1f the remlezvous is not completed
{due to & timeout expiring) then the owverheads are rather lower.

8) Comparison with Message Passing

R.1) Message Passing Paraligms

There are essentially three Aistinct forms of message passing inter
process communication scheme. The simplest simply consists of the semler
transmitting a message, and continuing execution without an acknowledgement
ever being returned. This scheme Joes not make it easy to detect remote
€ailures or lost messages, but may be quite appropriate umler certain
circumstances - e.3. transmission of data from a sensor, where the loss of
the occassional realing will not adversely affect the behaviour of the

SYStem.

The second paradigm is that of one process semrling o message, then
waiting until the message is acknowledged by the orocess which received the
message. This method gives scope for detecting and recovering from certain
classes of errors (e.g. lost messages caused by communications failures),
am clearly matches the semantics of the remlezvous.

The third paradigm is that of senling a message amd receiving an
explicit acknowledgement, with the sending process able to continue
processing between sending the message and receiving the acknowledgement.
The alvantage this offers over the seconl method is that oconcurrency is
improved since the sermrling orocess may be performing useful work whilst
waiting for an acknowledgement. This form of behaviour can only be achieved
in Aa by the artifice of creating a task specifically for performing the
inter - task communication, thus allowing the parent task to continue
executing. Tis technigue can have severe disadvantages as described below.,

8.2) T™e Two phase Commit Protocol

We Jescribe the implementation of the Two Phase Commit Protocol in Ma
as it serves to show the problems which arise from the fact that a task
cannot continue executing between sending 2 message anl receiving an
acknowledgement (i.e. the task is suspendedl whilst the rendezvous is in
progress), We believe this protocol to be a very salient example as it is
widely used as a way of ensuring consistency control in distributed database
systems,

We can atequately Adescribe the most important features of the Two Phase
Commit Protocol (2PC) by the following examwole. Tmagine that we have a
replicated Jatabase with a total of N copies, and we wish to uplate the
database so that all the copies remain in step. In essence we need to update
all the copies imlivisibly. This is achieved by one task (the control task)
motifying all the copies that an upiate is to be verformed, anml the tasks
responsible for the copies either acknowledge that they can perform the
upiate, or say that the uplate hags to be aborted because it conflicts with

P N e IS

st

w._s,u____ __

some uplate already in progress. This is the first, or notification, vhase.
The originating task then either informs all the cooperating tasks that the
uplate must be aborted, or instructs them to perform the uplate, as
aopropriate. Tn the latter case the tasks will update their copies of the
4atahase, then return acknowledjements to the originating task. This is the
secorr?, or udate, phase.

Clearly the implementation of the protocol will be complicated by the
need to 4eal with failures of remote computers etc., but the basic fcrm is
not affected by these oonsiderations. Using our third paradigm for the
message passing moel, the 2PC control task can transmit messages to all N
tasks, then wait for acknowledgements, in both the first and secoml phases.
Thus the message passing Aiscipline allows us to achieve a high degree of
concurrency.

If we implemented the 2PC protocol in Ada the simplest way would be to
per form the communication with each of the N cooperating tasks in turn, thus
having N rerrlezvous in series in the first phase, and similarly for the
secord rhase. WNote that this alrealy requires twice as many messages and
context switches as the message based implementation. This implementation
will obviously be slow as the inherent parallelism is lost.

Tn order to improve parallelism we could implement the protocol so that
the controlling task spawnedl N subtasks to verform the communication. This
has the urlesirable side effect of increasing the number of TCS as oontrol
vasses between the main and the subtasks. If sevarate subtasks were used for
each phase, arrl task/subtask synchronisation can he achievel by use of
shared variables, then this requires at least another 8N 1CS, making a total
of 16N TCS, four times the number required using message passing. It will be
quite awkward determining when each vhase has finished - perhaps the easiest
way being to use the subtask statusses to Aetermine when they have all
terminated.

Tt might be oossible to improve on these overhealds by creating N
subtasks for the Auration of the 2°C overation, however this would mean that
we would have to use remlezvous between the subtasks and the control task in
order to signal the enl of each vhase. This still reaquires SN TCS, but would
involve less vrocess creation amd Adestruction which must themselves be
exvensive operations. However it is possible that some of these contexts
switches can be eliminated by werforming optimisations, analogous to the
Nassi - Habermann optimisations.

Some MCS communication systems provide broadcast €facilities which can
provide very efficient l:many communication. The Ada rerrlezvous does no%
allow such hardware to be exploited.

Tn short it seems that Ada will enforce very expensive, and quite
complex implementations of protocols of the above form. Since this form of
protocol will be at the heart of any Distribute] Database Manager, am of
many other MCS applications, ¥a may be a very ovoor choice of implementation
language from the ooint of view of efficiency, am simplicity of
implementation.

9) Program Loaling and Hardware Mapping

The mapping of the Aa program onto the available hardware must be
specifiel at some stage in the program Aevelooment and loaling process,
unless the maoping is to be chosen automatically by the programming support
environment. Tt should he fairly straightforward to soecify the mapping

PO

LS

R o LR N

+ elther as oragmata in the program source text, or as commands to the program

loading system, although it may be 4difficult to decide what this mapping
should be. We are not oconcerned with the vroblems of 4deciding on a mapping,
rather on what should be loaded, and how it can be executed.

Tn pvarticular we are concerned with what should happen to the "main
body" of the program. For the sake of simplicity let us assume that the main
body of the program oonsists of a sequence of Adeclarations of tasks which
are to be run on a number of separate machines. Clearly the code for the
imlividual tasks should be loaded on the designated machines together with
code for instantiating the tasks. 2Add¥ress information to allow inter-task
communication must also be male available to the kernel (this may be
regaried as the vestige of the 4eclarations of the other tasks). We can rely
on the semantics of the remdezvous to ensure correct behaviour Adespite the
fact that tasks which wish to communicate may be created at significantly
Aifferent times.

The above solution is satisfactory so long as no task tries to create a
task to run in another machine. If tasks can be created in other machines,
then a mechanism has to be provided for one kernel to request another to
create and run a task. This facility may cause problems if the orocesses in
gseparate machines wish to share data, and it may also lead to difficulties
in scheduling, am in assessing the amount of mill time absorbed by any
task, etc., Similar comments apply to the inclusion of executable code in the
main boly of the orogram.

Tt would seem to be by far the simplest if Ala programs to run in MCS
were restricted in the following ways. First, the main body may only consist
of the declaration of tasks. Second, no task may create a task to run on
another machine. It seems likely that these restrictions would be acceptable
in practice.

10) Conclusions

We have described some possible ways in which an Ada remlezvous could be
implementel in an MCS. We have also considered the overheads of using the
remiezvous where we wish to perform 1:N, rather than 1:1, communication. We
have shown that the overheads of using the ada rendezvous as oposed to a
message basel communication system are quite large. This is, verhavs, not
surprising as procedure calls are fumiamental within a single computer, but
message passing, rather than remote wrocedure calls, are fundamental to
communication systems.

We have briefly considered the problem of loaling and executing Ada
programs, and we have suggested a rule for constructing and mapping Aa
programs which would simplify their implementation on an MCS.

We have not covered all the important issues to do with imolementing Ada
on an MCS. FPFor example we have ignored problems of deciding on a good
goftware to hardware mapping; how we test and monitor program execution; how
we exterd or replace parts of the ruming program etc. This omission can be
justifiel by saying that the other problems are pertinent to other
programming languages, not just Ala. What we have tried to do is to
concentrate on those problems which seem to be peculiar to da.

e L

il

